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Jand Gc analysis of the tearing of 
a highly ductile polymer 
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The use of a conventional J analysis to describe the ductile tearing of thin low density 
polyethylene sheet is described. This is a measure of the total energy required to cause 
fracture. The use of the current energy release rate to determine the local dissipation rate 
is then given and it is shown that an initiation (plane strain) and reasonably constant 
propagation (plane stress) values are obtained. 

Input energy of system. P Load. 
A Area of specimen. U Energy. 
B Thickness of specimen. C Compliance. 
W Width of specimen. M Constraint factor. 
a Crack length, oy Yield stress. 
J J-integral. u Displacement. 
Gc Energy release rate. r/ Dimensionless factor. 

1. Introduction 
Linear elastic fracture mechanics (LEFM) has been 
found to be useful in describing brittle fracture in 
polymers [1 ]. In these cases, the energy dissipation 
is very local to the crack tip so that the behaviour 
of the body as a whole is taken to be elastic and 
the energy dissipated in fracture is derived from an 
energy change in an elastic analysis. The practical 
importance of such situations is clear since they 
represent a lower limit of toughness for the 
material. Indeed, the plane strain toughness value 
[2] can be taken as such a bound for a given set 
of conditions and used in design calculations. This 
toughness usually includes some distortional energy 
and is considerably in excess of the bond scission 
surface work. This is because it is not possible to 
rupture molecular chains mechanically without 
first deforming them and the energy dissipated by 
this is inextricably linked with the work of bond 
scission. 

Having accepted the concept of a highly con- 
strained toughness including distortional energy, 
there are still cases to be considered when the 
toughness is much higher than this. In tough 
polymers, a low yield stress results in a low con- 

straint and surface shearing can result in extra 
work being necessary for fracture [2, 3]. If this 
occurs in a contained zone around the crack, then 
a modified form of the LEFM analysis can give 
useful values for the enhanced toughness. This is 
not, however, the unique geometry independent 
lower bound value of the high constraint case and 
will differ for different geometries. As the extent 
of plastic deformation increases so the utility of 
LEFM declines and it is eventually unusable. Here, 
we must look to other approaches and similar 
problems in the metals field which have resulted 
in the J energy concept. These have been tried on 
polymers [4-6]  but mainly when the deviation 
from LEFM was substantial but not gross. The 
correlation between modified LEFM and J is then 
quite good [6]. 

There are practical cases, and often in laboratory 
tests where it is necessary to evaluate grossly non- 
linear dissipative systems. Such situations have 
been treated by Andrews etal. [7, 8] using a 
generalized theory. This analysis has two quite 
separate aspects in that it embodies an analysis 
which gives J (termed - 2 d~/dA) and then seeks 
to compute the highly constrained lower bound 
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Figure 1 Load-deflection diagram for crack growth. 

value by experimentally measuring the energy 
dissipation other than this. This approach presents 
very difficult and time-consuming experiments and 
involves some profound assumptions on the nature 
of the hysteresis behaviour. It is arguable that such 
an approach is preferable to the more direct tech- 
nique of experimentally increasing the constraint 
of the test by, for example, using bending tests or 
greater thicknesses of  specimen. 

There remain situations, however, where the 
evaluation of a true fracture energy for a highly 
non-linear, non.elastic, system is needed, and this 
paper sets out to describe the analysis of such a 
system using quite conventional non-linear fracture 
mechanics. The problem to be solved is that of 
tearing thin, single edged notched specimens of 
low density polyethylene in which there is slow, 
stable ductile tearing. 

2. The d analysis 
There are several approaches to J analyses [9] but 
the one used here is the direct experimental 
method of Begley and Landes [10]. Suppose that 
a crack propagates in a stable manner in a body 
after being loaded to point C, as shown in Fig. 1, 
such that the displacement increases from ul at C 
to u2 at C' when the crack area has increased from 
A to (A + 6A). If the energy per unit area to 
propagate the crack is J, then the energy used for 
that purpose in the process i sJ6A.  I f ( u 2 - - u l )  = 

6u, then the external work performed is P6u, but 
it is not known how much of this goes into J and 
how much is stored or dissipated in the specimen 
generally. 

However, at C' the crack area is (A +6A) 
and if it is assumed that the loading line for this 
crack length is OC', as shown, then the shaded 
area between OC and OC' represents the energy 
necessary to grow the crack, J6A. This is the 
definition of J used here and is 

s - , v  II (1) 
6A {u c o n s t a n t .  

Any external work done during crack growth goes 
directly into the new total energy so that J may 
be defined conveniently at constant displacement. 
This definition assumes a path independence of 
the crack growth in that the energy required to 
reach a given displacement with a given crack 
length is assumed not to depend on the crack 
growth history. This is probably a reasonable 
assumption for most cases, excepting those where 
the degree of plastic constraint varies with crack 
length as in some bending geometries [9]. In these 
cases, the effective yield stress, which varies with 
constraint factor, will change with crack growth 
and thus change J so that J will depend on how 
A varies. 

If  the body is elastic, then J represents the 
elastic energy release which is balanced by Go, 
since equilibrium is assumed here, so that J = G e. 
J is not an energy release, however, but is an 
energy absorption and the energy release must be 
computed separately. For a material exhibiting 
linear elasticity, the unloading line is shown as CD 
in Fig. 1, while at C' there would, in general, be 
the line C'D'. For the purely elastic case, D and D' 
coincide and the area CDC' corresponds to the 
usual elastic energy release rate, G, given by 

p2 dC 
G - (2) 

2 d A  

where C is the elastic compliance of the specimen. 
This change in energy is brought about by the 
change in the elastic compliance of the specimen 
due to crack growth indicated by the change of 
slope in the unloading lines in Fig. 1, i.e. CD to 
C'D', and also the decrease in load C to C'. For 
an entirely elastic case, both D and D' coincide 
with O and COC' = CDC' is G, the elastic energy 
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Figure 2 J for single edge notch tension. 
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i.e. 

release rate. For a fully plastic specimen, the load 
drop CC' is determined and the energy release 
rate is given by CDD'C'. The expression for the 
total G may be computed from the elastic energy 

U = �89 ~ (3) 

where C is the elastic compliance, u/P. G may be 
defined as 

dA u = \ 2 dA PC (4) 

a = - - 5  + . (5) 

For elastic unloading, we have dP/dA = -  (P/C) 
dC/dA, giving G = (P2/2) dC/dA, the usual result. 

'As an example of a J and G analysis, which is 
also the specimen geometry used here, it is helpful 
to consider the single edge notch tension case 
shown in Fig. 2a. The total energy for a fully 
yielded specimen is 

U = B(W--a)Mayu (6) 

where M is the constraint factor. Now,A = Ba, so 
that 

J =  ~-~UI = Moyu. (7) 
o r  u c o n s t a n t  

Thus, J should be linear in u and independent of a 
with a slope of Moy for this fully plastic case. A 
linear elastic analysis shows that J = u 2 so that 
the J versus u curve will have the general form 
shown in Fig. 2b. 

The total G may also be computed for this 
system since 

and 
P = B ( W - - a ~ O y  

dP 
-- Moy . 

dA 

From Equation 5, we have 

P dC 
G -  

2B da 

The parameter [9] 

(8) 

(9) 

2c 1 ] 
dC/da (W--a )  1 (10) 

(W- -a )  dC 
r~ - - -  (11) 

C da 

is basically geometric but does depend on the 
nature of the deformation occurring. 

It is also possible to measure the external work 
input during crack growth to give 

6U 6u 
- -  = e - - .  ( 1 2 )  
6A ~iA 

3. Experiments and results 
Tensile tests were performed on single edge notch 
specimens 50mm x 150mm x 3ram extended at 
1.0 cm min -~ in an Instron testing machine. Tests 
were performed with initial crack lengths varying 
from 5 to 40 mm and the ligament was marked in 
3ram intervals. The specimen underwent gross 
deformation, as shown in Fig. 3, with substantial 
crack blunting but a tearing of the material 
occurred which progressed across the specimen. As 
the tear passed each marker, the load-deflection 
record was blipped so that finally a series of load-  
deflection diagrams with crack length marks on 
them was obtained, as shown in Fig. 4. Curves 
could then be drawn for fixed crack length by 
interpolation, and these are also shown in Fig. 4. 

52 



/ 

Figure 3 Single  edge  n o t c h  s p e c i m e n  
t e a r i n g  u n d e r  l oad .  
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Figure 4 L o a d - d e f l e c t i o n  d i a g r a m .  - -  
c o n s t a n t  z~a l ines.  
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Figure 5 Energy as a funct ion  of  crack length at constant  
deflection - J is given by  the  slope. 

These may be graphically integrated up to differ- 
ent displacements and several of these lines are 
shown in Fig. 5. As expected for yielded speci- 
mens, they are almost straight (independent of 
a) except for very large a values. The resulting J 
versus u line is shown in Fig. 6 and this shows 
the expected initial elastic curvature followed 
by linearity. At large u values, the slope, and 
hence M o y ,  increases probably due to orientation 
hardening. 

Returning to Fig. 4, it is now possible to deduce 
J for every point on the curves and Fig. 7 shows J 
versus Aa curves for the various initial crack 
lengths. There is rather a low initiation value which 
has only a slight dependence of initial crack length 
but there is a rapid rise of J with an increasing 
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Figure 6 J as a funct ion  of  displacernent. 
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Figure 7 J as a func t ion  of  crack growth for various initial 
crack lengths.  

dependence on a. This rise is, of course, necessary 
for the stable tearing behaviour observed. 

Fig. 8 shows the J versus Aa data for an initial 
crack length of 25 mm and, in addition, there is 
the input work rate, 6U/6A. Initially, ~U/6A >J 
and clearly much of this work is dissipated in the 
specimen but in the final stages of the fracture, 
6U/fA <J. This illustrates the important point 
that J is the cumulative energy dissipation rate 
per unit area of crack propagation. 

Much of the energy embodied in J is,  in f a c t ,  

dissipated before the crack moves and is in the 
body of the specimen. The local energy to actually 
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Figure 8 Energy input  rate and energy dissipation as a 
funct ion o f  crack growth  (a 0 = 25 mm).  
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Figure 9 Initial compliance C, dC/da and r7 as a function 
of crack length. 

propagate the crack must come from the energy 
release rate as the crack grows. For the case of  
non-linear visco-elastic materials such as low 
density polyethylene defining the modulus to use 
in an energy release rate analysis is difficult 
because of high hysteresis and non-linearity. It 
is also necessary to be precise on what is meant 
by energy release since complete unloading does 
not occur locally. A sensible solution is to deter- 
mine C from the initial slopes of  the loading 
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Figure lO Load as a function of crack growth. 
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Figure 11 Energy release rates for initiation and propa- 
gation. 

curves in Fig. 4 since these will embody an elastic 
effect appropriate to the rate of  the tests and the 
local, current, unloading of  the crack growth 
process. This was done and Fig. 9 shows C and 
dC/da derived from it, together with r/. The loads 
from Fig. 4 are plotted versus crack length in Fig. 10 
and clearly all the points lie on a constant dP/dA 
line required of  plastic yielding other than the 
initiation values. The slope of the line (--8 MN m -2) 
is, of  course, the same as the J-u curve in Fig. 6 
at the higher u values. 

For each point on the load-deflect ion lines 
given in Fig. 4, a value of  G could then be com- 
puted using the load and dC/dA for the initiation 
values and including r/ for all others. These results 
are given in Fig. 11, together with the initiation J 
values. Even at initiation, J is substantially greater 
than Ge, indicating considerable plastic work away 
from the "crack tip. As the cracks propagate, G e 
rises rapidly and then falls to a constant value of  
around 20 kJ  m -2. For short initial cracks, this rise 
is greatest, suggesting more plasticity, even local to 
the crack tip, for the higher loads associated with 
the shorter cracks. The larger initial cracks do not 
show this but some do rise very rapidly at the end 
of the specimen. This is probably due to high 
orientation when a small ligament is present. It is, 
however, clear that Ge, during propagation, varies 
very little particularly when the crack is well 
established. 

4. Conclusions 
These results establish that the J and G,analyses 
work well even for this extremely ductile material. 
J is clearly the measure of  the total energy to 
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Figure 12 Tear surface profiles. 

propagate the crack, while G e is local energy 
dissipation to finally effect fracture. There is some 
dependence of G c on crack length but there is a 
fairly constant initiation value of 4 kJ m -2 and one 
for propagation of 2 0 k J m  -2. The tear initiates 
with a plane front as shown in Fig. 12 and then 
rapidly draws in as propagation is established. The 
initiation Gc is thus appropriate to a plane strain 
condition, while that during propagation represents 
a fully established state of plane stress. This is 
supported by the fact that plane stress and plane 
strain toughness values determined in impact by 
varying specimen thickness gave similar values 
[11]. The plane strain values should be similar to 
those obtained by the Andrews method but is 
about a factor of ten higher than that quoted for 
low density polyethylene [8]. The values are 
likely to be sensitive to grade and this may account 
for the discrepancy. A direct comparison of the 
methods would be needed to resolve this matter. 

It seems likely that the initiation (plane strain) 
and propagation (plane stress) G c values are 
material properties in that fracture will require at 

least these energies to be dissipated. The J values 
represent the total energy necessary to affect this 
and are probably geometry dependent. Such values 
are important for design calculations where total 
work is needed, while for material evaluation the 
G c values, together with a yield stress, may be 
more important. The choice of the appropriate 
fracture energy measure is thus determined by the 
goal of the analysis. 
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